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LETTER TO THE EDITOR
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Abstract. The nearest-neighbourXY spin glass on a hypercubic lattice in four dimensions
is studied by Monte Carlo simulations. A finite-size scaling analysis of the data leads to a
finite-temperature spin glass transition atTc = 0.95±0.15. The critical exponents are estimated
to be νsg = 0.70 ± 0.10 andηsg = −0.28 ± 0.38. The results imply that the lower critical
dimensionality for theXY spin glass is less than four.

Recently there has been considerable interest in the behaviour of short-range vector spin
glasses [1–8]. Although there is now convincing evidence [2–4] thatXY spin glasses
exhibit only a zero-temperature phase transition ford = 2 and 3, the location of the lower
critical dimension,dL, remains controversial. A zero-temperature study by Morriset al [2]
suggests thatdL = 4. The validity of Nishimori and Ozeki’s [5] attempt at a Mermin [9]
type argument has been questioned [6] and it is claimed by Schwartz and Young [7] that
all one can actually show is thatdL > 2.

A recent Migdal–Kadanoff renormalization-group analysis [8], on the other hand, claims
that theXY spin glass orders at a finite temperature ford = 4 and, therefore,dL < 4. The
XY spin glass, unlike the corresponding gauge glass, possesses a ‘reflection’ symmetry.
It has, therefore, been argued [10, 11] that the two models belong to different universality
classes. Recent computer simulations [11] of the gauge glass in four dimensions clearly
show a finite-temperature transition.

Furthermore, evidence for a finite-temperature transition in the four-dimensional
Heisenberg spin glass with Gaussian nearest-neighbour interactions has been presented very
recently by Coluzzi [12]. However, it is by no means clear that Heisenberg andXY spin
glasses have the same lower critical dimension.

As far as we are aware, to date theXY spin glass has not been studied by simulations
for d = 4. We attempt to fill this gap by presenting in this letter the first results of extensive
Monte Carlo simulations of the four-dimensionalXY spin glass with±J nearest-neighbour
interactions. Applying finite-size scaling theory [13], we shall find evidence for a finite-
temperature glass transition.

The Hamiltonian for the model simulated is given by

H = −
∑
〈i,j〉

JijSi · Sj = −
∑
〈i,j〉

Jij cos(θi − θj ) (1)

with 0 6 θi 6 2π for all i. The planar spins,Si (= (Si,x, Si,y)), are situated on every
site of a four-dimensional hypercubic lattice of sizeL4(L = 2, 4 and 6). The summation
runs over nearest-neighbour pairs only and the interactions,Jij , are independent random
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variables selected from a binary±1 distribution. As usual, the temperature is given in units
of the nearest-neighbour interaction. We work with full periodic boundary conditions.

In the simulations we study the spin glass susceptibility,χsg, which is defined by

χsg = 1

N

∑
i,j

[〈Si · Sj 〉2
T ]J

= Nq(2)
sg

(2)

where 〈. . .〉T indicates a thermal average, [. . .]J denotes an average over the disorder,
N = L4 and

q(2)
sg =

∑
µ,ν

[〈q2
µν〉T ]J . (3)

In equation (3) the tensor variable,qµν , is defined in terms of the overlap between two
replicas 1 and 2,

qµν = 1

N

∑
i

S1
i,µS2

i,ν (µ, ν = x, y). (4)

Higher-order correlations such asq(4)
sg can also be written in terms ofqµν , namely

q(4)
sg =

∑
µ,ν,α,β

[〈q2
µνq

2
αβ〉T ]J . (5)

Rather than useq(2)
sg and q(4)

sg , it is far more convenient to work with the dimensionless
Binder parameter [13] defined by

gsg = 3 − 2
q(4)

sg

(q
(2)
sg )2

. (6)

According to finite-size scaling theory [13], nearTc we expect the Binder parameter to scale
as

gsg(L, T ) = gsg(L
1/νsg(T − Tc)) (7)

whereνsg is the correlation length exponent andgsg is a scaling function satisfying

gsg(L
1/νsg(T − Tc)) =

{
0 for T > Tc, L → ∞
1 for T < Tc, L → ∞ (8)

provided that the ground state is non-degenerate. Whereas for a finite-temperature spin glass
transition plots ofgsg(L, T ) againstT for differentL should intersect atTc, for a transition
at zero temperature we expect the curves to meet each other atT = 0 only.

The scaling form for the spin glass susceptibility is given by

χsg(L, T ) = L2−ηsgχsg(L
1/νsg(T − Tc)) (9)

where the exponentηsg describes the power-law decay of correlations at the transition
temperature andχsg is now a scaling function. It follows from equation (9) that

χsg(L, Tc) ∼ L2−ηsg. (10)

As the coordination number for our model isZ = 8, the mean-field values ofTc and the
exponents mentioned above are

T mf
c ≈

√
Z/2 =

√
2 νmf = 1

2 ηmf = 0. (11)
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We now describe our Monte Carlo simulations and discuss the results. During the
simulations, which were performed using the conventional Metropolis [14] technique on
a Cray Y-MP8 and a J90, we actually work with discrete spins. For technical reasons, the
spins were discretized to occupy 256 equally spaced orientations in the plane. Furthermore,
a variant of multispin coding [15] was used to store seven (discrete) spins in one word
and the lattice was composed of two inter-penetrating sublattices. As a consequence, each
update of the lattice allows us to update 14 separate samples (or, alternatively, seven pairs
of samples) at the same time.

We follow Bhatt and Young [13] and compare the spin glass correlations obtained from
two independent replicas with the same set of bonds with those from a single replica at two
different times. Equilibrium is assumed only if the values agree within the statistical error.

The number of Monte Carlo steps,τ0(L, T ), required to achieve equilibrium depends
on both the system sizeL and the temperatureT . τ0(L, T ) sets upper and lower
limits on the values ofL and T , respectively, that can be studied. In our simulations
we found thatτ0(2, 0.4) ≈ 1000, τ0(4, 0.7) ≈ 5000 andτ0(6, 0.75) ≈ 13 000 sweeps;
equilibration problems prevented us from going to lower temeperatures. The number of
bond configurations we generated to average over the disorder also varied withL. Typically,
we considered 7000(L = 2), 250∼ 2300 (L = 4), 100∼ 500 (L = 6) pairs of samples
for each temperature considered. (However, note that for the lowest two temperatures
(T = 0.775 and 0.75) for L = 6 we averaged over only 56 pairs of samples in each case.)
In total, the simulations presented in this work took approximately 600 h of CPU time on
the two supercomputers mentioned above.

Figure 1. A plot of the spin glass susceptibility,χsg, against the temperature forL = 2, 4 and
6. The lines are just guides to the eye.

In figure 1 we plotχsg againstT for the three different values ofL considered. The
statistical error bars were evaluated from the sample-to-sample fluctuations and are only
displayed in those cases where they exceed the size of the points.

The Binder parameter is plotted against the temperature in figure 2. Although the
curves clearly intersect at a finite temperature, the point of intersection is not unique. This
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Figure 2. A plot of the Binder parameter defined in equation (6) against the temperature for
L = 2, 4 and 6. The lines are just guides to the eye.

is probably due to corrections to finite-size scaling and the statistical error ingsg. As we
have data for three values ofL, we obtain three intersection temperatures,T L1,L2

c , where
L1, L2 = 2, 4, 6 andL1 6= L2. For the data presented in figure 2 we note that there is a
small downward shift in the value ofT L1,L2

c for increasingL1 andL2. Clearly, to establish
whether the shift is significant or not, it is highly desirable to obtain additional data for the
Binder parameter for larger lattices and lower temperatures. However, we note that there
is some evidence of a finite-temperature transition as the curves clearly splay out below
the intersection point. From figure 2 we estimate the spin glass transition temperature to
be Tc = 0.95± 0.15. Our value ofTc(≈ 0.7 T mf

c ) agrees well with the value ofTc ≈ 0.9
obtained recently by Nobreet al [8]. It is also surprisingly close to the transition temperature
found by Reger and Young [11] for the four-dimensionalgaugeglass.

Having obtained an estimate forTc, a log–log plot ofχsg(L, Tc) againstL is expected
from equation (10) to have a slope of 2− ηsg. Our results are consistent with this but the
uncertainty inTc leads to a large error inηsg and we estimate that 2− ηsg = 2.28± 0.38.

To fix the second independent exponent,νsg, we display in figure 3 a scaling plot of
χsg(L, T )/L2.28 against(L1/νsg(T − 0.95)). To see how sensitive the scaling plot is to the
value ofνsg, we have tried a range of values. As a result we estimateνsg = 0.70± 0.10.
As can be seen from figure 3, the data scale reasonably well forνsg = 0.70. Once again,
our value for the correlation exponent is remarkably close to the one found for the gauge
glass in four dimensions [11].

Finally, in figure 4 we show a scaling plot of the data for the Binder parameter for the
samevalues ofTc andνsg as the ones used in the plot for figure 3. We see that the data for
gsg do not scale as well as those forχsg. The quality of the data collapse does not improve
for other possible values ofTc andνsg. (A correction to scaling as suggested by Bokil and
Young [16] also fails to make any significant difference to the plot.) A similar behaviour
was found by Kawamura [4] in the three-dimensionalXY spin glass.

It has been assumed that theXY spin glass and the gauge glass belong to different
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Figure 3. A scaling plot ofχsg/L
2−ηsg againstL1/νsg(T − Tc) with ηsg = −0.28, νsg = 0.70

andTc = 0.95. See equation (9) in the text.

Figure 4. A scaling plot of the Binder parametergsg againstL1/νsg(T − Tc) for νsg = 0.70 and
Tc = 0.95.

universality classes as the latter does not share the reflection symmetry of the former. As
noted, our results are remarkable in their similarity to those found earlier by Reger and
Young [11] for the vortex glass in four dimensions. It is felt that this unexpected feature
requires further investigation.

To conclude, we have presented numerical evidence that theXY spin glass has a finite-
temperature glass transition in four dimensions. We have estimated the critical temperature
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and the critical exponents. Further work is required to confirm the transition temperature
and obtain more accurate values for the exponents. Our results are in agreement with the
analytic approximation carried out by Nobreet al [8]. They are also surprisingly similar
to those found earlier by Reger and Young [11] for the four-dimensional gauge glass and
imply that dL < 4 for theXY spin glass.

Work is underway to investigate the chiral glass [4, 16] behaviour of the model using
the vortex representation [16].

The simulations were performed on a Cray YMP and a J90 at the Rutherford Appleton
Laboratory through an Engineering and Physical Sciences Research Council (EPSRC)
research grant (Reference GR/K/00813).
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